B.01.Натуральные числа

B.02.Системы счисления

  • B.02.Напиши число, построй величину
    Пример задачи:

    Построй величину в заданной системе счисления

    Построй величину А в заданной системе счисления А=103(4)

  • B.02.Римские цифры
    Пример задачи:

    Число римскими цифрами 2207

    Какое римское число соответствует числу 2207 ?  
  • B.02.Десятичная система счисления
    Пример задачи:

    Какие числа составили Поликарп и Колька?

    Отличник Поликарп и двоечник Колька составляли максимальное
    5-значное число, которое состоит из различных нечётных цифр. Поликарп своё число составил правильно, а Колька ошибся — он не заметил в условии слово "различных", и очень радовался, что его число оказалось больше, чем число Поликарпа.
    Какие числа составили Поликарп и Колька?

    Подсказка
    Подумай, какими должны быть первые цифры искомых чисел.


B.03.Сложение и вычитание натуральных чисел

  • B.03.Сложение натуральных чисел
    Пример задачи:

    Вычислить сумму

    Вычисли сумму натуральных чисел от 1 до 60.

    Подсказка.
    Для вычисления суммы сгруппируй слагаемые и определи сколько таких слагаемых

  • B.03.Восстанови равенство
    Пример задачи:

    Восстанови равенство

    231 + ... = 350 + 361
  • B.03.Сложение натуральных чисел. Задачи
    Пример задачи:

    Сколько микробов засядут в ученом?

    В одной капле воды сидит 4468 микробов, в другой капле микробов сидит в два раза больше, чем в первой, а в третьей — в четыре раза меньше, чем во второй.
    Сколько микробов засядут в ученом с мировым именем Иннокентий, если он перепутает эти капли с валерьянкой и выпьет их залпом?



  • ...и ещё 4 темы

B.04.Умножение и деление натуральных чисел

  • B.04.Деление с остатком
    Пример задачи:

    На каком этаже квартира?

    Лена живет в квартире №29. На каком этаже ее квартира, если на каждом этаже по 6 квартир?



  • B.04.Умножение удобным способом
    Пример задачи:

    Вычисли, используя законы умножения

    Вычисли, используя законы умножения



  • B.04.Восстанови равенство
    Пример задачи:

    Восстанови равенство

    Восстанови равенство

B.05.Среднее арифметическое чисел

B.06.Делимость чисел

B.07.Числовые и буквенные выражения

B.08.Уравнения

B.09.Математический язык

B.10.Отношения и пропорции

  • B.10.Отношения
    Пример задачи:

    Чему равна крутизна лестницы?

    Крутизной лестницы называют отношение высоты ступеньки к ее глубине. Чему равна крутизна лестницы, у которой высота ступеньки 16 см, а глубина 32 см?


  • B.10.Пропорции
    Пример задачи:

    Верная пропорция

    Верна ли пропорция?

  • B.10.Прямая и обратная пропорциональные зависимости
    Пример задачи:

    Сколько машина проедет за 7 часов?

    За 3 часа машина проехала 150 километров. Сколько она проедет за 7 часов, если будет двигаться с той же скоростью?


  • ...и ещё 2 темы

B.11.Обыкновенные дроби

B.12.Сложение и вычитание обыкновенных дробей

  • B.12.Сложение и вычитание дробей с одинаковым знаменателем
    Пример задачи:

    Вычисли



  • B.12.Нахождение части от целого. Задачи
    Пример задачи:

    Задача на части

    Любимая модель мотоцикла Александра – "Харлей Дэвидсон". Ведь мощность мотоцикла "Ява" всего 1114 от мощности "Харлея", а мотоцикла "Хонда" 35 мощности "Харлея". Какой из двух мотоциклов имеет большую мощность?

  • B.12.Текстовые задачи с дробями
    Пример задачи:

    Задача на части

    По пути из муравейника к ручью муравей остановился возле потерянной туристом карамельки. Сколько времени понадобилось муравью на весь путь до ручья, если до конфетки он бежал 116 минуты, а от конфеты до ручья понадобилось на 26 минуты меньше?


  • ...и ещё 3 темы

B.13.Умножение и деление обыкновенных дробей

B.14.Десятичные дроби

B.15.Целые числа

B.16.Положительные и отрицательные числа. Координатная прямая

B.17.Модуль числа. Противоположные числа

  • B.17.Модуль числа
    Пример задачи:

    Верно ли утверждение?

    Верно ли утверждение?

    "Число, противоположное сумме чисел 0,5 и –2,7, равно 3,2"
  • B.17.Действия с модулями
    Пример задачи:

    Действия с модулями

    Найди значение выражения

  • B.17.Противоположные числа
    Пример задачи:

    Противоположные числа

    Заполни ячейки



B.18.Арифметические операции с положительными и отрицательными числами

B.19.Координатная плоскость

  • B.19.Координаты точек. Положительные числа
    Пример задачи:

    Перемещение на координатной плоскости

    Каким образом переместиться из точки (1;1) в точку (3;2)?

  • B.19.Координатная плоскость
    Пример задачи:

    Плавает или летает?

    Нанеси все точки и узнаешь что здесь нарисовано.
    Точки наноси по порядку, начиная с первого столбика с помощью инструмента

  • B.19.Точки на координатной плоскости
    Пример задачи:

    Точки на координатной плоскости

    Расставь точки с заданными координатами

    (3; 7), (–2; –5), (4; –2), (–5; 6)
  • ...и ещё 1 тема

B.20.Проценты

B.21.Геометрия

  • B.21.Язык геометрических рисунков
    Пример задачи:

    Часть прямой линии

    Как называется часть прямой линии, ограниченная с двух сторон?
  • B.21.Прямая. Отрезок. Луч
    Пример задачи:

    Обозначение геометрических фигур

    Выберите правильное обозначение прямой
  • B.21.Виды многоугольников
    Пример задачи:

    Верно ли, что...

    На столе лежат пятиугольники и шестиугольники.
    Верно ли, что если пятиугольников 13, а шестиугольников 9,
    то всего у них 129 вершин?

  • ...и ещё 8 тем

B.22.Вероятность

  • B.22.Понятие вероятность
    Пример задачи:

    Пойдет ли дождь?

    Какова вероятность, что 31 августа пойдет дождь?
  • B.22.Вероятность события
    Пример задачи:

    Вероятность похода в магазин

    В группе туристов 5 человек. С помощью жребия они выбирают двух человек, которые должны идти в село за продуктами. Турист А. хотел бы сходить в магазин, но он подчиняется жребию. Какова вероятность того, что А. пойдёт в магазин?

  • B.22.Достоверные, невозможные и случайные события
    Пример задачи:

    После зимы наступит весна

    После зимы наступит весна. Какое это событие?


B.23.Комбинаторика

  • B.23.Классическая комбинаторика
    Пример задачи:

    Странное свойство посадок

    В старой усадьбе дом обсажен по кругу высокими деревьями — елями, соснами и березами. Всего деревьев 96. Эти деревья обладают странным свойством: из двух деревьев, растущих через одно от любого хвойного — одно хвойное, а другое лиственное, и из двух деревьев, растущих через три от любого хвойного — тоже одно хвойное, а другое лиственное. Сколько берез посажено вокруг дома?

    Подсказка
    Заметь, что условие наложено на деревья одной "четности".


  • B.23.Раскладки и разбиения
    Пример задачи:

    Группировка шариков

    Можно ли разложить 44 шарика на 9 кучек так, чтобы количество шариков в разных кучках было различным?

    Подсказка
    Подумай, сколько нужно шариков, чтобы выполнить условие задачи.


  • B.23.Правило произведения
    Пример задачи:

    Язык племени Мумбо-Юмбо

    Алфавит племени Мумбо-Юмбо состоит из трех букв.
    Словом является любая последовательность, состоящая не более чем из четырех букв.
    Сколько слов в языке племени Мумбо-Юмбо?

B.24.Логика

  • B.24.Задачи на математическую логику
    Пример задачи:

    Многоголовые драконы

    Если бы у зеленого дракона было на 6 голов больше, чем у красного, то у них было бы 34 головы на двоих. Но у зеленого дракона на 6 голов меньше, чем у красного. Сколько голов у зеленого дракона?

B.26.Текстовые задачи

  • B.26.Задачи на время
    Пример задачи:

    Из Уфы в Москву

    Теплоход прибыл из Уфы в Москву 14 июля в 19 ч 30 мин, совершив путь за 12 суток 10 часов 20 минут. Когда теплоход отплыл из Уфы?

  • B.26.Задачи на части
    Пример задачи:

    Сколько мест было в каждом из поданных автобусов?

    Для поездки школы на экскурсию было подано 8 одинаковых автобусов. Если бы в каждом автобусе было на 15 мест больше, то в них смогли бы разместится 360 человек. Сколько мест было в каждом из поданных автобусов?


  • B.26.Задачи на совместную работу
    Пример задачи:

    Наводнение в Венеции

    В Венеции во время наводнения затопило подвал дома.
    Чтобы выкачать воду, установили 5 больших насосов
    и 3 маленьких. Большой насос выкачивал за 1 час 500 литров,
    а маленький – 200 литров воды.
    Через 2 часа вся вода была выкачана.
    Сколько воды скопилось в подвале?



  • ...и ещё 3 темы

B.27.Неравенства

  • B.27.Числовые неравенства
    Пример задачи:

    Выбери числа, подходящие для данного неравенства

    Выбери числа, подходящие для данного неравенства

         x ≥ 3

  • B.27.Буквенные неравенства
    Пример задачи:

    Найди значение выражения

    Найди значение выражения

    −k


B.28.Чтение графиков, таблиц, диаграмм

  • B.28.Чтение графиков
    Пример задачи:

    Отметь точки

    Отметь точки, находящиеся на расстоянии 5 клеток от точки D

  • B.28.Чтение таблиц
    Пример задачи:

    Зависимость атмосферного давления от высоты

    В таблице показана зависимость атмосферного давления р (в миллиметрах ртутного столба) от высоты h (в километрах)




  • B.28.Чтение диаграмм
    Пример задачи:

    Найди длину каждого животного

    Найди длину каждого животного





B.29.Последовательности

  • B.29.Числовые последовательности
    Пример задачи:

    Восстанови последовательность

    Какое число пропущено?

  • B.29.Буквенные последовательности
    Пример задачи:

    Следующие два слова

    Следующие два слова?

    один, четыре, шесть, пять, ..., ...,


  • B.29.Графические последовательности
    Пример задачи:

    Цвет машинки

    Кирилл рисует цветные машинки: сначала голубую, потом зеленую, потом красную, потом черную, снова голубую, зеленую, красную, черную и так далее...Какого цвета будет двадцать шестая машинка?

B.30.Степень числа

  • B.30.Степень числа. Основные понятия
    Пример задачи:

    Порядок действий при решении уравнения

    В каком порядке выполняются действия, если в них содержится квадрат числа?
  • B.30.Квадрат и куб числа
    Пример задачи:

    Длина стороны квадрата

    Какова длина стороны квадрата, площадь которого равна 0,25 м² ?
  • B.30.Возведение в степень
    Пример задачи:

    Возведение в степень

    Возведи в степень

  • ...и ещё 1 тема

B.31.Задачи с параметрами

  • B.31.Задачи с параметрами
    Пример задачи:

    При каких значениях параметра а...

    При каких значениях параметра а уравнение имеет положительные решения?

    a ⋅ х = 2

Статистика заданий будет доступна после регистрации



!
Ошибка в тексте?
Выдели текст и сообщи нам!